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PLANE CRACK OF AN ARBITRARY DISCONTINUITY IN A BOUNDED ELASTIC BODY* 

R.V. COL'DSHTHIN and E.I. SHIFRIN 

A system of integro-differential equations corresponding to the problem of a plane 
crack of an arbitrary discontinuity in a bounded elastic body is investigated. It 
is proved that the integro-differential operator of the system continuously maps 
H,,,O(G) and H+(G) and is a Fredholm operator of index zero. This operator is 

decomposed into the sum of two operators: one corresponds totheproblem of a crack 
in an unlimited medium, while the other takes account of the influence of the body 
boundary. When the body boundary is remote from the crack, the second operator is 
small in the norm, and consequently, the total operator is reversible. This means 
that the system can be solved by successive approximations. The conditions for 
convergence of the method depend on the body and crack geometries andonthematerial 
properties. In the sense of the estimates obtained, the crack estimate can be con- 
sidered remote from the boundary of the body even when it is arbitrarily close to 
the boundary and has a large diameter but a small area. As an illustration, esti- 
mates are calculated for the constants in the condition for convergence of succes- 
sive approximation for a sphere with a crack in the diametral plane. 

1. Let there be a plane crack occupying a domain G of the plane xQ = 0 in a bounded 
elastic body V. It is assumed that the body surface Sis free of forces, while forces og3 = 

ti , identical in absolute value but opposite in direction, axe appliedtothe crack surfaces. 
In this case the jumps in the displacements bk on the crack surfaces satisfy the system of 
integro-differential equations ./l/ 

Li, Ibl - Mi, Ibl = tj, i = 1, 2, 3, b = (b,, b,, b,) 

MS PI = S uk* (Q) Skis (Q, JY as (Q) - S tk’ (Q) &s(Qt P) ds (Q) 

tj’ = - Ujm” ?Z, 

(1.1) 

oti* (P) = - Sbk (Q) SE,1 (Qt P) dSG (Q), P E 5’ 

&%%H,k] -f- &fni%R,r i njR,iR,d $ 

h&,,R,i 3 njsk$ -k ni6kj - w nk6,j) 

Dkij = - & [ biR,j -t- bcjR,i - bjR,k $_ Av R,iR,jR,k] 
p = (1 - 2v)d2 (1 - v)], R = 1 P - Q 1, R,f = (Pi - Q$R 

Here tk” are stresses on the surface S caused by displacement jumps b in the unbounded 
body, uK' are displacements of the surface S of a body without cracks V if forces t*' are ap- 
plied to S, n, are components of the unit vector, and 6ij is the Kronecker delta. Here and 
below the integrals over the volume of the body, its surface and the surface of thecrackare 
different by the signs of the differentials. 

The operator L fbl corresponds to a crack G in an unbounded medium and can be writtenin 
the form /l/ 

LIhl= (Lmlbl, Ls [bl. .&w M) - 

f F-’ {I E t (6~ + & r)&) b } = - -$- -%,, bnr = @I, b,) 
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The displacements uka in the expression for ‘Vi, lb] are not expressed explicitlyinterms 
of t;, consequently it is impossible to write down a dependence of ukS on b. However, the 
displacements ukS can be obtained as the solutions of elasticity theory equations for a body 

V without cracks for stresses II: given on the surface S. The single-valued solvabilityof 
these eqcations to the accuracy of a rigid displacement is proved (see /2/, for instance), 

where for tk8EL,(S) the displacements lie in II, 09, and therefore, u,‘EHl;,(S). An estimate 
of the &-norm of uk' is presented below. 

2. Let us show that the operator L [bl - Al lb], h/1 lb1 = (M,,lb!, Jf23 (bl, PI,, lbl) maps H,%‘(G) 
continuously into H-I!,(G), where it is a Fredholm operator of index zero. 

We recall that for vector-function spaces II,‘(G) and H,(G) are defined analogously to 

the case of scalar functions 

1 b $,, = --& 
(2X)- ss (I+ I 4 I) I b” (5) I3 4 

-n 

I b’ (8 1’ L I b,” (El I2 + I b,- (3 1’ + I b,” (k) 1’ 

t EH_~,~(G) if and only if ti E lf_,,? (G), i = 1, 2. 3 

where It is the continuation of t in //_,;z (P). It = (l,t,, I&, l,t,), lit, is the continuation of ti in 

H-X,, CRY. 

That L Lb1 - Af Lb1 is a Fredholm operator will followfromthereversibilityoftheoperator 

L Lbl, and the complete continuity of the operator Mfbl. Moreover, if the body boundary is 

sufficiently remote from the crack surface, then the norm of operator M [bl is small, conseq- 

uently, the operator L lb1 - 111 Lb1 is reversible, and the system (1.1) can be solved by suc- 

cessive approximations. 

Now L [bl is a first order linear operator, and hence maps HI,~O(G) continuously into the 

conjugate space H_,!,(G). Therefore, it is sufficient to prove the coercivity ( CL Ibl, b) 1 I- 
co11st (1 b /I,,_2 for the reversibility of the operator L [bl The coercivity of L lb1 follows from 

the results in /3,4/. In conformity with /3/ 

(2.1) 

where p(G) is the area of the domain G> II.11 is the &-norm, h,(K,) istheminimaleigennumber 

of the operator pe,A /3/, and K,is a unit circle. It follows from (2.1) 

(Ab,, bJ > x/I b, ll~/>~; x = I/n& (K,) {It\ (G)1’,‘2 $ I/& (K,)}-* 

I - Y+-- G’% bs) 1 > $+ II b3 It,, . (1 - v) 

In conformity with /4/ 

Using (2.2) and (2.3) we obtain 

(2.2) 

(2.3) 

(2.4) 

From the inequalities (2.2) and (2.4) it follows 

I CL [bl, b) I > q II b If,. (2.5) 

Therefore, the coercivity, as well as the reversibility,oftheoperator L [bl areproved. 
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Toprove the complete continuityoftheoperatorJ4 Iblitis sufficient toprove the inequality 

)I M Lb1 11 < const II b lb.* (2.6) 

Indeed, from the inequality (2.6) there follows M: H1,sO(G) -Ho(G) is a continuous map- 
ping, and since i: H,(G)--+H_:,(G) is a completely continuous imbedding, then 151: HII: (G) + 
H_,js(G) is a completely continuous operator. 

II b III,. 
To obtain an estimate of the norm of Mlb] we first estimate the norm of tk' in terms of 

[ti”]‘= S(ti”)“dS=S(~ijsnj)“dS < SI~(~~j~)*ll~nj*I dS= S [~(cs~~)"( dS = [UC]' 
j I j 

I~if(P)I=lSbk(Q)Skij(Qt P)dSc(Q)I,< ll"ll(S~Gij (Q, J’)~SG(Q))‘/’ (2.7) 
k 

II b!12 = ~211bl12 + (1 - y') 11 WI* < y211bllr + (1 - y') [p (G)V (A b, b) [I/%, (K,)]-' 

We select yz = 1~ (G)W {[r_l (G)l"z + I/&, (K,)J-', then y' = (1 - v") 1~ (G)l'!z [I/GA, (K,)l-' . We 
hence obtain 

II b II S Y II b 111:x 

From the inequalities (2.7) and (2.8) it follows 

I 0iF (4 I Q Y II b IhA (‘j? Sk (QT P) ~SG (Q))“’ 

[ti”l < (sr, 1o.i: @‘)I2 ds P))“’ -S 

Y II b ll*/I [ S(Sx %j (QT 4 dSG (Q)) CD (P)]“’ .S 
k. j 

(2.8) 

v II b lb/s [S( S Jf Shj (07 P) dS (J’)) dSc CO)]“’ 
k, 2 

It”1 = (2 [ti”]*)“’ < y 11 b Ill/. [S(S ‘Jf S:ij (QT J’) dS (P)) ~SG (Q)]“’ < 

y II b iIs FIG IP (W2 
k. i. 3 

[& = SUP S 2 SLj (Q, J’) dS (J’) 
k. i, j 

(2.9) 

Here and below the sup is taken in QE G. The index of G indicates that the normals are 
taken at the point Qto the domain G in the expressions for Skij(Q,P) _ From the expressions 
for Mi3[b] we obtain 

I Miz Ibl I< Iu”] (s 2 Slkis (Q, PI dS (P))“’ + It"1 (5 2% (Q, J’) dS PI)“’ 
k k 

[u*]~ = 12 [ni” (P)la dS (P) 

t 

(2.10) 

We estimate the &-norm of Mlb] by using (2.10) 

II M PI II = (s 2 Mi33 PI dSc)'l'< WI IS,], + It"1 l&l,) [jh (G)]"z 

(S3]s2=SUP SiS& (Qv P)dS(P) 
k,i 

(2.11) 

where the normals tothesurface S at the point P are taken in the expression for SkiI@~ p, 

[Ds]s? = sup 1 x&3 (Qv J’) dS P) 

k,, 

To esimate )IM IbIll it remains to estimate [u']. As already noted, z+'(P) is the shift 
of the elasticity of a body Vwithout cracks on the boundary S for loads t: given on S . 
There is arbitrariness in the determination of uke since uk' is determined to the accuracy 
of a rigid displacement. Integrals including uk' and in the eXpreSSiOn for Mi, lb1 are in- 
dependent of the specific selection of uk', we shall consider that 

Sakdu=O, k=l,2,3 (2.12) 
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s u‘,, dv = 0. i, j= 1, 2, 3, 

where Ui are the displacements in the body x Under the conditions (2.12), the [u"] can be 
estimated. Let P,j be the strain tensor, Eij is the stress tensor in the body V without 
cracks with the load t' on the surface: 

s 
e,,;E;j do = 

s 

au, 
x Eij du = 

F 
, -& (uiEii) dv - 

5”i~dv=iS~~~~jcer(n,h,ldS=5U~t~dS<[uaJ[t~] 

The displacements ilk satisfy the conditions (2.12), hence, the second Kom inequality 
holds 

Se;j~i, dv>CkSEj grad~~]*du 

Therefore 

ck S 7 I grad ui 1’ du < [u”I It*] (2.13) 

By the theorem about traces /2,5/ 

[u‘]~ < C,, S XI grad ui I2 dv 

From (2.13) and (2.14) 1 

({~Igrad ui ]*dv)Llr< C$Ci’[t’] 

hi] < C8yck-1 [t’] 

Substituting the inequality (2.15) into (2.11), we obtain 

II M lb1 I/ < [VI B [p (G)lQ 

B = [C,,‘C,-” fs,]s2 + [~,]s2 + ~CS~C,~-~ [s,], [~,],]‘11 

There follows from (2.9) and (2.16) 

(1 M [bl /I < Y II b 111/z [SIG [P (‘31 B 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Therefore, the inequality (2.6) is set. 

3. To prove the reversibility of the operator L [bl--M lb1 in the case when the body 

boundary is remote from the crack surface, we replace the system (1.1) by an equivalentsystem 

b - R,M Lb] = q; b E Hx,p (G), q = R-t 62 f&:“(G) (3.1) 

R,: H-t,2(G)+ HI,,’ (G) is the inverse operator to Lib] (such an operator exists according 

the proof above). 

Let Qb denote the operator mapping b into q + R&f Ibl, where 9: HI,,” (G) + HI,*’ (G). 
The system (3.1) takes the form 

Qb = b, b E HI,~ (G) 

For a sufficiently remote boundary of the body from the crack surface, the operator 

compressive, i.e., 

to 

51 is 

Indeed 

II Qb’ - ‘A2 lb/. < 9 11 b1 - bZ II*,* = 0 11 d I(>,. 
0 < 8 < 1, d = b’ - b2, Vb’, b2 

(3.2) 

II Qb’ - QbZ IIx,z = II ‘I + R,M lb’1 - q - R,M [b2] ]],,a = jl R,M Id] /I,;_ 

Let L [b] = f. where f EL,(G), then 

I VJ [bl. W I < I f II II b II G Y II f II II b II’,. 
From (2.5) and (3.4) we have p~/lb~/,,~2-1<y~(f\l l/bll+, or 

II b II+ < 2~ II f II P-’ x-l 
We conclude from (3.3), (3.5) and (217) that 

II Qbl - Qb2 ill,,< 2y II M [dl II IL-’ x-l d 2yzq1 x-l II d ~~~~~ [IL (G)le 

(3.3) 

(3.4) 

(3.5) 
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Let us note that y2x-l = [p (G)]"z~-'lSh,-l (K,), therefore 

// Qb' - Qbe ]I,,. d 2 Ip (G)]""p-'n-"*h,-' (K,) ]I d ~~,,ISl,B (3.6) 

Because of (3.6), we can take as 8 in (3.2) 

8 = 2 [p (G)]*+'n-l'zhl-' (K,)[S],$ (3.7) 

If the crack diminishes in the body V, then the quantities C,, and C, do not change 
since they are independent of the crack, the quantities [SIC, IS,],, [D,], do not increase, and 
[k (G)l”l* diminishes. Therefore, by decreasing the crack it is always possible to achieve that 
the quantity 8 does not exceed unity and the operator Q is compressive. We note that in 
the sense of (3.7) the body boundary can be remote from the crack surface even in the case 
when the crack is arbitrarily close to the boundary, has a large diameter, but sufficiently 
small area, which assures satisfaction of the condition of compressibility of the operator 52. 
We later calculate a specific estimate of the quantity 8 for the case of a sphere, which re- 
sults from (3.7). 

4, If it is taken into account that AI( /3/, then we obtain in place of (3.7) 

0 = [p (G)]“+- W’~~ [ S],B 

It can be established as a result of awkward calculations that 

W31g d I - SUP (s n-W)‘” sup [ 1 (fh” + 2fi$,R;s + ~aZRfs)dSj “* Sn(l-v) 

[S]a =sup 
IS 

P2P’ 

I 

;I, 
4n"lP(l - 2V)% 

[10-20~+30v~+(66+12~-18v")Rf~]d~ = 

PP 
2n (I-2v) S"p y= 4&"~p {SR"(al+ a,&,)dSj'l' 

(4.1) 

(4.2) 

(4.3) 

It hence follows that 

[SIG d p ~ sop (SR-” dS)lhsup [ 1 (a~~+ Za~a,R~~ + cQR;,J dS] “’ 
49X(1-V) 

[S,], = 9.lp 
is 

P2P" 
4nzRB(, _22v)' ]5--+5++ (82+ 54v- 15~~) Rf3+ 

(4 + 28~ - 24~9n9~] d.Sf”=&&$up[~R-6 (yl + yzRy3 + Y3ns2) dSj”’ 

From the expression for [Sal, we obtain the estimate 

Toestimatethe constants C ,p,C~the form of the domain V must be known. Alsotheshapeand 
location of the crack G must still be given for a further estimate of lDs],,]S],,[S,], . 

5. Let V be a sphere of radius R. 

in /6/. 
In this case the quantity ck is calculated exactly 

In particular, cI,= p/2 for V),i/i4. Let us calculate CSP - We turn to the spherical 
coordinates I = rsin tl cos 'p, y = r sin 8 sin cp. z = rco.90. 

Let us consider the sufficiently smooth function F(~,p,~)=f(r,O,cp) such that 

Let us expand 

Here Y,(Q) (0. e) 

operator 6: 

s F(z,u,z)du=O (5.1) 

f(r,e,cp) in a series of spherical functions 

f(r,%cp) = 5 2 a,,(r) Y$'(8.cp) 
7X=0*=.1 

(5.2) 

is the q-th spherical function corresponding to the n-th eigennumber of the 
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We consider the normalized system of spherical functions to be chosen 

It follows from (5.3) that 

Since 

where S, is a unit sphere, we have 

(5.3) 

(5.4) 

(5.5) 

Because of (5.1) and (5.2) and the fact that for n>l 

s ” Y(*) (0, ‘P) d.S, _.~ 0 

we have 

It follows from (5.4) and (5.5) that the best constants D, and D, must be foundsuch that 

~"a;, (R) < D, ;rz (a;, (r)Pdr (5.7) 

" 

for functions no1 bounded and satisfying (5.6) and 

RQz&(R)< D, 
! 
[rZ (a,, (r)Y + n (n + 1) a"n, (r)]dr (5.8) 

U 

for bounded functions %Q (r). 
We note that the best D, is obtained for n=l. Hence, instead of (5.8) itis sufficient 

to consider just the inequality 

~2~ = ;i; i” (r2 (a’ (r))? + Za’? (r)] dr (R-?a-” (R)) 

” 

Without limiting the generality, it can be considered that a(R)= 1. Therefore 

D;' ~_ O,.),i;!R)_Lf [rx (u' (r))'+ k'(r)] dr (R-') (5.9) 
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We assume that the minimum is achieved in (5.9) for a(r)= g(r),/&(r) is a bounded function and 

h (R) = 0 

1 i-- 

R 

[ ’ (g’ (r) + h’ (r))2 + 2 (g (4 fh W)Y dr = s Ir’ (g’ @))I + 2g” (41 dr + 
0 

i r: 

R 

[ ’ (h’ (r))z + 2h” (r)] dr + 2 1 [r'g' (r) h' (T) f 2g (r) h (r)] dr 
” 

A minimum is realized on g(r), hence, for any allowable function h(r) 

! 
[r”g’ (r) h’ (T) + 2g (r) h (r)] dr = - ;h (r) [r’g’ (r) + Zrg’ (r) - 2g (r)]dr = 0 

” ” 

Therefore 
r2gU (r) + 2rg' (r) - 2g (r) = 0 (5.10) 

Solving (S.lO), we obtain g(r) = C,/r2+ C2r. Since g(r) is a bounded function, C,= 0. There- 

fore, g (4 = C,r and since g(R)= 1, then g (r) = rR-’ 

D;’ = R-2 [r?R-’ + 2r2R-?] d,. = R-1 

” 

Therefore, it is established that D,=R. We now determine D1. We rewrite the inequality 
(5.7) in the form 

R 

(c& (r))‘dr (R-‘a;$?)) 1 
Without limiting the generality it can be assumed that sol(R)= 1. Then 

For a,,(r)= g(r) let the minimum of (5.11) be achieved, /L(T) is a bounded function, h (R) = 0 , 
and h(r) satisfies condition (5.6) 

&g’(r)+h’(r))Jdr=H 
R 

1 r1 (g’ (r))Zdr + 5 9 (h’ (r))l dr + 2 f r?g’(r) h’ (r) dr 

0 0 0 0 

Since the minimumis realized on g(r) 

[? r g' (r) h' (r) dr = - 
s” 

h (r) (2rg’ (r) + r’g” (r)] dr = 0 (5.12) 
" 0 

It follows from (5.12) and condition (5.6) for h(r) 

$g”(r) + 2rg’ (r) = Cr2, c = const (5.13) 

Solving (5.13), we obtain g (r) = C,r-' + C, + Cr26m1. Since g(r) is a bounded function, then C,=O. 
Since g(R) = i 

c, + CR?64 = 1 (5.14) 

Because g(r) satisfies (5.6) 

S(r’g(r)dr= f 1 2 [C,r + Cr%-'1 dr = C2R33--L + CR* @I)-’ = 0 
0 0 

or 
12, + O.iCR* = 0 

Solving (5.14) and (5.15), we determine C= 15R-2;Ct= -1.5. Therefore 

(5.15) 

g (r) = -1.5 + 15r2R-26-l; g’ (r) = 5rR-” 
H 

D;’ = R-2 1 25+R-4 dr = 5R-1; D1 = 0.2R 

0 

In connection with the fact that D,>D,, for a sphere C,,, - D, = R. 

6. To estimate the integrals in the estimates (4.2), (4.3), (4.4), it is necessary to 
calculate 

Hn= 
5s s 
n2*dS , In-= R:‘jdS; n =I,2 

s s 
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J, = s’ R-8 dS, .I, = s It-‘” dS, 

S 

K = f Rf3&d.S 
s s 

For definiteness, we assume l-to be a sphere of unit radius. Then 

x2a 
H1 = 

ss 
* ’ c03913~inf3d~di3=$. 

0 0 
272n 

H,=” 

ss 
c05ft3sinedpde =+ 

0 u 

The integrals J,,J, evidently depend on just the distance p between the point Q and the 
center of the sphere. We assume the point Qto be on the axis 1. The center of the sphere 
coincides with the origin. Then Q = (O,O, p) and P = (z, y,z). 

In the spherical coordinate system 

J,(p), J%(p) are increasing functions of p. To estimate the quantities I, and Kit is necessary 
to have more exact data about the crack G. It is later assumed that G lies in the diametral 
plane of the sphere i= 0. Since Q lies in the plane z= 0, then by a change of variable I, 
can be transformed in such a way #at it would agree with the integral that is obtainedinthe 
case when Q lies on the z axis and has the coordinates (O,O,p), but a projection on the z-axis 
is taken for the vector P-Q* Therefore 

It can be seen that the function decreases as p grows, and hence 

I, (p) <I, (0) = H, = 4n/3 

-K 4P(L-P)2(1+p)Li-~(It~z)(3p+p31+8p(3$_2~~+~)- 128Q~ i 

8(1+p~)(l-p~)2[ln(4+p)-l~t(l-p)]-16p(1+p')~ 
1 

The function I,(p) also decreases as p grows, consequently 

I,(p) <r, (0) = Hz (0) = 4ni5 

K = 1 R;&d& < (\ Rt& j” (5 a$ d,,? < 4n*5 

Now all is ready for the consideration of the example. 

Example. Let 1; be a unit sphere from a material with v= 0.3. The center of the sphere 
coincides with the origin, and Gis a crack in the diametral plane of the sphere. We assume 
that the crack G is a circle of radius p whose center coincides with the center of the sphere. 
If p = 6.23, then the quantity 6 estimated from (4.1) does not exceed 0.865 and the operator 
G is compressive. If p = 0.25, then we obtain the estimate 6g 1.286 from the calculations 
cited, and it is impossible to assert on the basis of this estimate that R is a compressive 
operator. 

REFERENCES 

1. GOL'DSHTEIN R.V., Plane crack of an arbitrary discontinuity in an elastic medium, Izv.Akad. 
Nauk SSSR, Mekhan. Tverd. Tela, No.3, 1979. 

2. FICHHRA G., Existence Theorems in Elasticity Theory /Russian translation/, MIR, Moscow,1974. 



377 

3. GOL'DSHTEIN R.V. and SHIFRIN E.I., Isoperimetric inequalities and estimates of certain in- 
tegral characteristics of the solution of the three-dimensional elasticitytheoryproblem 
for a body with plane cracks of a normal discontinuity, Izv. Akad. Nauk SSSR, Mekhan. 
Tverd. Tela, No.2, 1980. 

4. GOL'DSHTEIN R.V. and SHIFRIN E.I., Certain energy methods of constructing estimates in 
three-dimensional elasticity theory problems about plane cracks of an arbitrary discon- 
tinuity, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.4, 1981. 

5. OBEN J.-P., Approximate Solution of Elliptical Boundary Value Problems /Russian transla- 
tion/, MIR, Moscow, 1977. 

6. PAYNE L.E. and WEINBERGER H.F., On Korn's inequality, Arch. Rat. Mech. Anal., Vo1.8, No.2, 
1961. 

Translated by M.D.F. 


