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PLANE CRACK OF AN ARBITRARY DISCONTINUITY IN A BOUNDED ELASTIC BODY"

R.V. GOL'DSHTEIN and E.I. SHIFRIN

A system of integro-differential equations corresponding to the problem of a plane
crack of an arbitrary discontinuity in a bounded elastic body is investigated. It
is proved that the integro-differential operator of the system continuously maps

ij(G) and H;%(G) and is a Fredholm operator of index zeroc. This operator is
decomposed into the sum of two operators: one corresponds to the problem of a crack
in an unlimited medium, while the other takes account of the influence of the body
boundary. When the body boundary is remote from the c¢rack, the second operator is
small in the norm, and consequently, the total operator is reversible. This means
that the system can be solved by successive approximations. The conditions for
convergence of the method depend on the body and crack geometrics andon the material
properties. In the sense of the estimates obtained, the crack estimate can be con-
sidered remote from the boundary of the body even when it is arbitrarily close to
the boundary and has a large diameter but a small area. As an illustration, esti-
mates are calculated for the constants in the condition for convergence of succes-
sive approximation for a sphere with a crack in the diametral plane.

1. Let there be a plane crack occupying a domain G of the plane z; =0 in a bounded
elastic body V. It is assumed that the body surface § is free of forces, while forces a;; =
t; , identical in absolute value but opposite in direction, are applied to the crack surfaces.
In this case the jumps in the displacements b, on the crack surfaces satisfy the system of
integro-differential equations /1/

LisIbl — My bl = t;, i =1, 2, 3, b = (by, by, by) (1.1
Mis bl = § us (0) Swis (01 P)dS (Q) — § 142 (Q) Duss (0, P) S (Q)
= — O
0 (P) = — {05 (Q) Suss (@, P)dSc(Q), PES
Skij = — 5 {3R,zﬂz [%‘R,k + g O R, + 8yiR.5) —
s BB | + o (uR Ry + iR R +
Iru R R s + 0 -+ by — "(i%é:’,l nxﬁﬁ}

3
Dyj=— o [5kiR,j + OBy — 8By + = R,{R,jR,kj,

p={—-2vwWi2(1 =], R=|P—Q|. R;=(P,— Q)R

Here t° are stresses on the surface § caused by displacement jumps b in the unbounded
body, u;* are displacements of the surface § of a body without cracks V if forces ¢° are ap-
plied to §, n, are components of the unit vector, and §;; is the Kronecker delta. Here and
below the integrals over the volume of the body, its surface and the surface of the crack are
different by the signs of the differentials.

The operator L [b] corresponds to a crack G in an unbounded medium and can be written in
the form /1/

L [b] = (Ly3[b], Lzs[b), Lgs [b]) —
P18 (Ba + 7 M) s | = — & Abyy, b= by, b)
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%Fﬂ{|§|bswl=—§7{&;—;)‘l’c;/\ba
a=12 f=12; na==8/|E] z={(m1, 1) =G,

b= b e vds =k - nk

—o0

The displacements u°® in the expression for M;,[b] are not expressed explicitly in terms
of #', consequently it is impossible to write down a dependence of u,° on b. However, the
displacements u,® can be obtained as the solutions of elasticity theory equations for a body
V without cracks for stresses #® given on the surface §. The single-valued solvability of
these equations to the accuracy of a rigid displacement is proved (see /2/, for instance),
where for #*cL,(S) the displacements lie in H,(V), and therefore, u;*& Hy,(S). An estimate

of the L;-norm of u' is presented below.

2. Let us show that the operator L [b] — M (bl, M [bl = (My3lbl, My, (bl, My, [b)) maps H..°(G)
continuously into H., (@), where it is a Fredholm operator of index zero.

We recall that for vector-function spaces Hy (G) and H (G) are defined analogously to
the case of scalar functions

b, = SS (181 b () 1 dg

—

[ (&) =67 QP+ 107 (52407 B

teH_.y (6) if and only if 4 = H_y, ), i=1,2,3

v it~ (
=il SSI1+|a|’ *
where It is the continuation of t in "y, (RY), It = (1), Lits, lst3), Lty is the continuation of 4 in
H_.,, (R,

That L Ibl — M [bl is a Fredholm operator will follow from the reversibility of the operator
L |bl, and the complete continuity of the operator M [bl. Moreover, if the body boundary is
sufficiently remote from the crack surface, then the norm of operator M I[bl is small, conseg-
uently, the operator L |bl — M [b] is reversible, and the system (l.1l) can be solved by suc-
cessive approximations.

Now L |[b] is a first order linear operator, and hence maps Hi,” (G) continuously into the
conjugate space H_.,(G). Therefore, it is sufficient to prove the coercivity | (L (b, b) |
const (| bij-2 for the reversibility of the operator L [bl. The coercivity of L [b] follows from

tie results in /3,4/. In conformity with /3/

i B Vnh a
T 20 =) (Abs, by) | > T —v) G)]x/ " bs || (2.1)
where p (G) is the area of the domain G, ||| is the L,-norm, *,(K;) is theminimal eigennumber

of the operator pgxdA /3/, and K, is a unit circle. It follows from (2.1)
(Abs, by) > %l by 1l ® = l/n?» Ky {lp @) + VRM (Kp)}y?

l— Ty A bs)| > 5y s 1 (2.2)
In conformity with /4/
b bt &) |k 2.3)
| L (4bar, b | > 4 o (Sl b @ P (2.
Using (2.2) and (2.3) we obtain
| — - (b, bag)| > 55 b 3, 2.4)

From the inequalities (2.2) and (2.4) it follows
|(L ), )| => EX (b (2.5)

Therefore, the coercivity, as well as the reversibility, of the operator L [b] are proved.
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To prove the complete continuity of the operator M [blit is sufficient to prove the inequality
I} M bl || < const | bl (2.6)
Indeed, from the inequality (2.6) therxe follows M: HyS° (G) > Hy(G) is a continuous map-
ping, and since i: H,(G) — H.,,(G) is a completely continuous imbedding, then M: H.. (G)—>
H_y, (G) is a completely continuous operator.
To obtain an estimate of the norm of M |bl we first estimate the norm of ¢’ in terms of

1Bl
| S| 45 = §| 50,7

S =[g"?

it = § 2 S = { (03°ny)* S < §| F(0*)®

ot (P)] = §06.(Q) Sus (@ P dSa(Q)| < b1 ({3 5% (@, P)dSe @)™ 2.7)

2 )
b1 = I bIE 4+ (1 — ) 1IBIE< ¥ IUbIE 4 (1 — v¥) [ (G)F (A b, b) [V 7, (K

We select v = [p (G)I: {lp (O + Var (K} then w2 = (1 — %) [w (O))V: [V h ()T . We
hence obtain

b <71 bl (2.8)

From the inequalities (2.7) and (2.8) it follows
|0 (P) | < v by, ((3 Sk (Q, P)dSe (@)
K

11 < ({3 [ow* (P2 (P)) " <

vIB . [{({3 k(0. Prase @) as P <

k,j
Vb s [§(§ 35k @, Py ds (P)) dSa (@]
1= (3 [ti'l')"" <vibl [§(§ 3 Sks(Q, P)dS(P)) dSe (@] < (2.9)
i k, i, j

Y b il [S16 [ (G2

[Sle=sup{ 3| Sk;(Q. P)dS(P)

k,i,j

Here and below the sup is taken in Q& G. The index of G indicates that the normals are
taken at the point @ to the domain G in the expressions for Sy;;(Q, P). From the expressions
for M;;[b] we obtain

[ M b | < 1) ({3 ks (Q, PYAS (P + (8] (3 D3is (@, Py (P)) (2.10)
k k
)= { 1w (P)1*dS (P)

We estimate the ZL,-norm of M |b] by using (2.10)
|8 111 = (§ ) Mis? [b) dS)"” < (10T [Ss], -+ [ Dsl) 1w ()] (2.11)

[S5):*=sup { 3\ Skis (Q» P) dS (P)
k,i

where the normals to the surface S at the point P are taken in the expression for S;;3(Q, P)
[Ds);* = sup § 3\ Dis (Q, P)dsS (P)
ki

To esimate || M [bl|| it remains to estimate [u’]l. As already noted, u’ (P) is the shift
of the elasticity of a body V without cracks on the boundary S for loads t# given on S .
There is arbitrariness in the determination of u® since u® is determined to the accuracy
of a rigid displacement. Integrals including u* and in the expression for M;;[b] are in~
dependent of the specific selection of u,*, we shall consider that

(=0, k=1,2,3 (2.12)
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. . . 1 (?u{ 5“;‘
Su,,dv._(), i,j=1,2,3, w“'—T('@?"azi)

where u; are the displacements in the body V. Under the conditions (2.12), the [u*l can be
estimated. Let e¢;; be the Strain tensor, E;; is the stress tensor in the body V without
cracks with the load t* on the surface:

6ui 8
S &3l dv = S Tz; Eydv= g 9 (@B} dv —

+

i dv =\ usE, yds = ufte dS < [ [
S"i 72, D—Sui 1j €08 (1, ;) ——Suiti < Lo’ [

The displacements u; satisfy the conditions (2.12), hence, the second Korn inequality
holds

Sei_;E“dv>Ck82]grad u; > dv

Therefore

CkSZ|gradui|2dv<[u‘][t‘] (2.13)
By the theorem about traces /2,5/

[“‘]2<Csp82|gl‘ad u; |2 dv (2.14)
From (2.13) and (2.14) !
(S Sgradu[? du)‘/< CoaCit It

'] < €y G2 [8%) (2.15)

Substituting the inequality (2.15) into (2.11), we obtain
1M I < [t°] B [p (G)I- (2.16)
B = (€20 18512 + D312 + 2C,,67 [S,), (D)1
There follows from (2.9) and (2.16)
I M B <C 7D o, (Sle n (G B (2.17)

Therefore, the inequality (2.6) is set.
3. To prove the reversibility of the operator L [b] — M [b]l in the case when the body
boundary is remote from the crack surface, we replace the system (1.1) by an equivalent system
b— R.M bl =q; b& ) (6), q= Rt & Hy?(G) (3.1)
Ry Hoy, (G) —~ Hy® (G) is the inverse operator to L (bl (such an operator exists according to
the proof above).

Let Ob denote the operator mapping b into q + R.M Ibl, where Q: Hy° (G) — Hy’ (G).

The system (3.1) takes the form
Qb = b, b= Hy’ (6)

For a sufficiently remote boundary of the body from the crack surface, the operator Q is
compressive, i.e.,

1 @bt — Qb |y, < 8] b — b2|ly, = 0l d |}y, (3.2)
0<<8<<1,d=D>b*—b? Vb b
Indeed

| @bt — Qb2 =|q + R M [b] — q - B M [b?] ly, =t R M [d] ;.. (3.3)
Let L |[b]=f. where f =L, (G), then

@b,y I<ItlbI<ylE]Ib],, (3.4)
From (2.5) and (3.4) we have pribl, 20 <vfl [bl,, or
(b, <2y [£]p ! (3.5)

We conclude from (3.3), (3.5) and (217) that
lQbt — Qb2 < 2y | M [d] [ u~t %t < 292t x| d )y, [0 (G)]B



Let us note that y2x!= [u ()}, (K,), therefore
Qb — @by, << 2 [p (G p-ta~=1 (R | d by, [SIB (3.6)
Because of (3.6), we can take as 0 in (3.2)
8 = 2 [p (Gt~ h, 1 (Ky)(S]GB (3.7)

If the crack diminishes in the body V, then the quantities C;; and (; do not change
since they are independent of the crack, the quantities [§lg, {S,l,, [D;]; dc not increase, and
[p ()T diminishes. Therefore, by decreasing the crack it is always possible to achieve that
the guantity O does not exceed unity and the operator Q is compressive. We note that in
the sense of (3.7) the body boundary can be remote from the crack surface even in the case
when the crack is arbitrarily close to the boundary, has a large diameter, but sufficiently
small area, which assures satisfaction of the condition of compressibility of the operator Q.
We later calculate a specific estimate of the quantity 6 for the case of a sphere, which re-
sults from (3.7).

4, If it is taken into account that A, (Ky =~ ?2/3/, then we obtain in place of (3.7)

8 = [p (O u-1a~"/2[S]B (4.1)

It can be established as a result of awkward calculations that

cup [C[2—8Y B+ (16 —16v 4 4v) RE] Y (Br+ BBy V"
[Bs], = sup {S B4R (1 —v)° * ds} =P {S B4R (1 — v) dé}

[Da], < m sup (S RS dS)"‘ sup [S (B2 -+ 2B:PaRy + 2R s | ” (4.2)

20,2 s
[$1g = sup{S4——n2m€1H_ 2\_)2[10 — 20v4-30v34-(66 - 12v — 18v?) H?a] dS] =

. N2
D . R~ 2 — |ad
ma—2v P {3 (ot @Rl a5} =

S sup {SR‘G (e + ayR%s) ds}lh

It hence follows that

s s
[Slo < gty P <SR-12 dS) sup [S (0n® + 20,00, L a;2RY ) dS:I ! (4.3)

[Ss], — sup {S W“F(’?L—W [5— 6v - 592+ (69 + Bdv — 15v2) R +
(4 -+ 28v — 24 ng?] ds}‘/’ =[:Wp‘_.;)_sup{SR‘5 (1 + 12R? § + pansd) ds}" :
From the expression for [S;]; we obtain the estimate
(2], < gy S0P (S R dS)"‘sup [ S (72 + 2R + Toinat + 29, R2  + 21avons? + 2vevs B gng?) ds] " (4.4)

To estimate the constants Cyp, Cy the form of the domain ¥V must be known. Also the shape and
location of the crack G must still be given for a further estimate of [Djl,, [S1g, [Ssls

5. Let V be a sphere of radius R. 1In this case the quantity ¢y is calculated exactly
in /6/. 1In particular, C;=p/2 for v >1/14. Let us calculate (s, . We turn to the spherical
coordinates z=rsin@cos¢, y = rsin@sin @, z = rcos.

Let us consider the sufficiently smooth function F(z,y,3) =7 (r, 8, 9) such that

Sp(z,y,z)du=o (5.1)

Let us expand {(r,8,¢) in a series of spherical functions

o nq
Hne o) = 3 3 e, ) Y@ ¢) (5.2)

n=0 g=1

Here Y,@ @, ¢) is the g -th spherical function corresponding to the rn—-th eigennumber of the
operator &:
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1 0 1 02
g (8, 9)=——_ |2 (sin@ I
¢ (% %) Sin® [ e( n e>+ S acpJ

We consider the normalized system of spherical functions to be chosen

Fly=1,= 3 3 a0 v 0.0 (5.3
ne=0 g=1
It follows from (5.3) that
o« g
SFZdS: D Ry, (R) (5.4)
n=0 q=1

Since

S]gradF|’-’du:§rZS[(§£>2+r_t_

0

)+ e (55) ]

where S, is a unit sphere, we have

S [ grad £ [?dv — §r2S L(iia’ (r) Y2 (8, tp)>>< (5.5)

n=2) g==1
o Py
(m ( YD (8, @) | af

(B Ym0 9) 4 (3, Y0 02
p=0 m=1 n= q=1

1 e DB, ¢} 9
FEnTo (Z ng (1) —7(4,—)%] dSydr =

n=) g==1
R ~ Mg ~ Ty
-, , ., n ) 0,9 4
VLY, et e ) e 0§ (S G
v = g=1 n=1 g==1
ay(@ (e,

1, { Q)_‘i)dbl]drA
«inz0 d(p I

([R5 st oo

n=( g==1
Because of (5.1) and (5.2) and the fact that for n>1
S Y@ (8, ¢) dS) =0
we have
R
Srram(r)dr:o (5.6)

o
It follows from (5.4) and (5.5) that the best constants D, and D, must be found such that

R
Rea? (R)< D, S 7 (a), (r)2dr (5.7)
0

for functions g, bounded and satisfying (5.6) and

R, (R)< D, S[rwnq () - (n 1) a2, ()] dr (5.8)
for bounded functions aug (7)-

We note that the best p, is obtained for »=1. Hence, instead of (5.8) it is sufficient
to consider just the inequality

R
R (R) < Dy S (2 (@ (r))2 - 202 (r)] dr
0

p;t = mew (@ ()2 -+ 2a2 ()] dr (R=2a (R))
Without limiting the generality, it can be considered that a(R) = 1. Therefore
R

D' - inf 3 [7% (@’ (r))? + 2a2 (r)] dr (R™?) (5.9)
a(r), a(R)=1 b
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We assume that the minimum is achieved in (5.9) for a(r) =g (r,k (r) is a bounded function and
B(R)=0 R R
(e o) +w e +2E @ +rerie= (2@ er+eeele+
bt 0
R

R
S [r2 (& (r))2 4+ 2h% (r)] dr +-2 S [rg’ (rYR (r)+2¢ (r) R (r)]dr
0 )

A minimum is realized on ¢ (7, hence, for any allowable function & (r)
R R
e (W o)+ 28 () R ) dr = — SR () I3 () + 2rg? () — 28 ()dr =0
0

Therefore
128" (r) + 2rg' (1) — 24 () =0 (5.10)
Solving (5.10), we obtain g (r) = CJ/r®+ Cor. Since g (r) is a bounded function, ¢, = 0. There-
fore, g()= Cyr and since g(R)=1, then g ()= rr?

R
D' =R~ S [r2R-2 1 2r*R-2] dr = R
u

Therefore, it is established that p,=R. We now determine D,. We rewrite the inequality
(5.7) in the form

Without limiting the generality it can be assumed that g, (R)=1. Then

R
Di'=  ind S 7 (af, (r)*dr (R72) (5.11)
an(r), an(R)=1 b
For ag (r) = g (r) let the minimum of (5.11) be achieved, & () is a bounded function, h(R)y=10,
and & (r) satisfies condition (5.6)
R R R R
(@ o +wmzar=( @ oye+ {reora+ 2§ seow e
0 0 0 0
Since the minimum is realized on g (r)
R R
S g ()W (r)dr =— S h(r){2rg' (r) +1%" (r)]dr =0 (5.12)
0 0
It follows from (5.12) and condition (5.6) for & ()

r2g” (r) + 2rg’ (r) = Cr?, C == const (5.13)

Solving (5.13), we obtain g ()= Cy'+ C; + Cr%6), Since g (r) is a bounded function, then ¢; = 0.
Since g(R)=1
C,+ CR¥6™1 =1 (5.14)

Because g (r) satisfies (5.6)
R R
S rg (r) dr — S [Car® + Cri6=1)dr — C,R53- - CR® (30)~1 = 0
0 0 :
or

Cy+ 0ACR* =0 (5.15)
Solving (5.14) and (5.15), we determine ¢ = 15R"% (C,= —1.5. Therefore

g (r) = —1.5 + 15r*R72671; g’ (r) = 5rR~*
R

Dt = R-2{ 254R-tdr = SR Dy =0.2R
0

In connection with the fact that D, > D,, for a sphere (g, = D,= R.

6. To estimate the integrals in the estimates (4.2), (4.3), (4.4), it is necessary to
calculate
Hn=S"§"d5v I = SR:":;dS; n=1,2
5 5
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Jy= S REdS, Jy= SH‘i‘ldS, K = S R ndS
s 8 ’

For definiteness, we assume V to be a sphere of unit radius. Then

zon

H, = 55 co ebmedq:de,._g_
00
qen

Hy = SS cos$0 sin 8 dp db = 3T
o U >

The integrals J;, J, evidently depend on just the distance p between the point ¢ and the
center of the sphere. We assume the point @ to be on the axis :. The center of the sphere
coincides with the origin. Then @ =(0,0,p) and P = (z,y,12)

In the spherical coordinate system

2
r N kmﬂdﬁpdﬂ 7:4;[3—9)(1{'39‘)
1{p} = OS 3 (I—p{1+4p®
nan
sin@dpdd  4n (54 10p* 44 | (14 p)0 4 (1 — )%
R2 10 (1 —p) (1 4 p)°

¢ 0
R*= (1 - p* — 2pcos B)

J1{p), Ja (p) are increasing functions of p. To estimate the quantities 7, and X it is necessary
to have more exact data about the crack . It is later assumed that 6 lies in the diametral
plane of the sphere :=0. Since @ lies in the plane :z=0, then by a change of variable I,

can be transformed in such a way that it would agree with the integral that is obtained in the
case when { lies on the z axis and has the coordinates (0,0,p}, but a projection on the z-axis
is taken for the vector P — Q. Therefore

b
L(p) =S

S WP o @ sinbg a =g llp (10 —2(1 —ppsx (In(1-+¢) —la (L —p)})
0
1t can be seen that the function decreases as p grows, and hence

Oz/a;;

L) <L {0) = Hy = 4n/3

T L, € i
Lip) = S7§rd51 S S sin Bcofspcpsme dg db =
0o

{49(1—p)° (0 3 (1 3% (Go-+ 6%) -+ 8p (34 207 + 3p) —

128{35
8(1 499 (1 —p)20n {1 +p) —In (1 —p)] — 16p (1 +pf>'-}

The function I, (p) also decreases as p grows, consequently
I (o) I, (0) = Hy (0) = 4*1/5
K72
=SR!3n331531<\f {S R’3d51} (Sna“dsl) < 45

Now all is ready for the consideration of the example.

Example. Let V be a unit sphere from a material with v=08. The center of the sphere
coincides with the origin, and 6 is a crack in the diametral plane of the sphere. We assume
that the crack ¢ is a circle of radius p whose center coincides with the center of the sphere.
If p=0.23, then the guantity 8 estimated from {4.1) does not exceed 0.885 and the operator
Q is compressive. If p=0.25, then we obtain the estimate 8< 1.286 £from the calculations
cited, and it is impossible to assert on the basis of this estimate that Q is a compressive
operator.
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